
1/24

Python Turtle parancslista a Kovács Mihály

Országos Grafikus Programozási versenyhez1

Tartalom
Python turtle beállítása _____________________________________ 3

Default turtle mód ___ 3

Normál turtle mód __ 3

Háttért tulajdonságainak beállítása __________________________ 3

colormode(mód) ___ 3

bgcolor() | bgcolor(szín) | bgcolor(r, g, b) _______________ 4

bgpic() | bgpic(képnév) ____________________________________ 5

clearscreen() __ 5

resetscreen() __ 5

screensize() | screensize(szélesség, magasság, szín) _______ 5

Teknőc mozgatás __ 6

forward(távolság) | fd(távolság) ___________________________ 6

backward(távolság) | back(távolság) | bk(távolság) _________ 6

right(szög) | rt(szög) _____________________________________ 6

left(szög) | lt(szög) ______________________________________ 6

goto(x, y) | setpos(x, y) | setposition(x, y) ______________ 7

home() ___ 7

setheading(irány) | seth(irány) ____________________________ 7

setx(x) __ 7

sety(y) __ 8

Az űrlap alja __ 8

Teknőc állapotainak lekérdezése ______________________________ 8

position() | pos() ___ 8

towards() __ 8

xcor() ___ 8

ycor() ___ 9

heading() __ 9

distance(x, y) | distance(teknős) 9

Rajzolás tulajdonságainak beállítása _________________________ 9

speed() | speed(n) ___ 9

tracer() __ 10

reset() ___ 10

clear() ___ 10

write(szöveg) | write(szöveg, mozgat) 11

Toll tulajdonságok __ 11

pendown() | pd() | down() _________________________________ 11

penup() | pu() | up() _____________________________________ 11

pensize() | width() | pensize(n) | width(n) _______________ 12

1 Forrás: https://docs.python.org/3/library/turtle.html

https://docs.python.org/3/library/turtle.html

2/24

pen(**beállítások) __ 12

isdown() __ 12

color() | color(vonalszín) | color(vonalszín, kitöltszín) _ 13

pencolor() | pencolor(szín) _______________________________ 13

fillcolor() | fillcolor(szín) _____________________________ 13

filling() ___ 13

begin_fill() __ 14

end_fill() .. 14

Kész rajzoló eljárások ______________________________________ 14

circle(r, a) __ 14

dot() | dot(méret) | dot(méret, szín) _____________________ 15

stamp() ___ 15

clearstamp(azon) __ 15

clearstamps() | clearstamps(n) 16

Animáció __ 16

no_animation() __ 16

delay() | delay(idő) ______________________________________ 16

tracer() | tracer(n) | tracer(n, idő) _____________________ 17

update() .. 17

Eseménykezelés __ 17

listen() __ 17

onkey() | onkeyrelease() __________________________________ 18

onkeypress() __ 18

onclick(fun, btn=1, add=None) _____________________________ 18

onrelease(fun, btn=1, add=None) ___________________________ 19

ondrag(fun) | onrelease(fun, btn) | onrelease(fun, btn, add)

 __ 19

ontimer(fv) | ontimer(fv, idő)) ___________________________ 20

mainloop() | done() 20

Python vezérlő utasítások ___________________________________ 20

for ___ 20

while ___ 21

if __ 21

if else ___ 22

def ___ 22

return .. 22

Matematikai függvények – math modul _________________________ 23

sqrt(szám) __ 23

sin(x) __ 23

cos(x) __ 23

tan(x) __ 23

pi __ 24

radians(szög_fok) ___ 24

3/24

Python turtle beállítása

Default turtle mód

Minden turtle utasítást bemásol a névtérbe, előnye, hogy rövidebbek az utasítások (nem
kell a turtle. előtag a teknőc utasítások elé. Hosszabb programok és animációk
készítésekor nem előnyös.

Példa

from turtle import *

forward(100)

left(90)

forward(100)

Normál turtle mód

A turtle modul egyben kerül importálásra, mindent a turtle. előtaggal érsz el, ami
hosszabb kódot eredményez, de kevesebb hibát okoz. A továbbiakban ezt a módot
tárgyaljuk.

Példa

import turtle

t = turtle.Turtle()

t.forward(100)

screen = turtle.Screen()

screen.bgcolor("white")

Háttért tulajdonságainak beállítása

colormode(mód)

A colormode() a turtle-ben azt határozza meg, hogyan értelmezze a színeket
numerikusan (RGB értékekkel). Azt mondja meg a turtle-nek, hogy az RGB értékek:

• mód = 1.0: 0–1 között,

• mód = 255: 0–255 között legyenek.

Példa

import turtle

4/24

screen = turtle.Screen()

t = turtle.Turtle()

screen.colormode(1.0)

screen.bgcolor(0.5, 0.2, 0.8)

t.color(0.0, 0.0, 1.0)

screen.colormode(255)

screen.bgcolor(128, 52, 202)

t.color(0, 0, 255)

bgcolor() | bgcolor(szín) | bgcolor(r, g, b)

A TurtleScreen háttérszínének lekérdezése vagy beállítása.

bgcolor()

Visszaadja az aktuális háttérszínt

• szöveges színleírásként (pl. "orange")

• vagy RGB tuple-ként (r, g, b)

A visszakapott érték felhasználható más color(), pencolor(), fillcolor() vagy
bgcolor() hívásoknál.

bgcolor(szín)

Beállítja a háttérszínt a megadott színre. A szín egy szöveg, amely lehet:

• Előre definiált szín: pl. "red", "yellow"
• A szín hexadecimális kódja: "#33cc8c"

bgcolor(r, g, b)

Ugyanaz, mint az előző, csak az RGB értékeket külön paraméterként adod meg. Az RGB

megadási módja függ a colormode(mód) beállítástól.

Példa

screen.bgcolor("orange")

screen.bgcolor()

’orange’

screen.bgcolor("")

screen.bgcolor()

screen.bgcolor("#800080")

screen.bgcolor()

5/24

(128, 0, 128) / (0.5019607843137255, 0.0, 0.5019607843137255)

colormode(255)

screen.bgcolor(128, 0, 128)

colormode(1.0)

screen.bgcolor(0.5, 0.0, 0.5)

bgpic() | bgpic(képnév)

Paraméter nélkül az aktuális háttérkép nevének lekérdezése. A képnév paraméterben
megadott GIF kiterjesztésű kép beállítása háttérképnek.

Példa

import turtle

screen = turtle.Screen()

screen.bgpic() # háttérkép lekérdezése

"nopic"

screen.bgpic("hatter.gif") # a hatter.gif beállítása hátérképnek

screen.bgpic("nopic") # háttérkép eltávolítása

clearscreen()

Mindent töröl a képernyőről: az összes rajzot, az összes teknőcöt, az összes
eseménykezelést. Visszaállítja az alapállapotot: fehér háttér, nincs háttérkép, nincs
billentyű/kattintás esemény, a rajzolás ismét be van kapcsolva.

Példa

import turtle

screen = turtle.Screen()

screen.clearscreen()

resetscreen()

Eltávolít minden korábbi rajzot, törli az összes teknőcöt és megszünteti az összes
eseménykezelést (billentyű- és egérkattintásokat). A képernyő visszaáll az
alapértelmezett állapotba: fehér háttérrel, háttérkép nélkül, és a rajzolás ismét aktív.

Röviden: olyan, mintha a program most indult volna el.

Minden teknőcöt alapállapotba állít a képernyőn.

screensize() | screensize(szélesség, magasság, szín)

Paraméter nélkül visszaadja az aktuális vászonméretet, paraméterekkel átméretezi a
rajzolási vásznat, nem az ablakot!

Paraméterek:

6/24

• szélesség – vászon szélessége pixelben

• magasság – vászon magassága pixelben

• szín – háttérszín (szöveg vagy RGB tuple – lásd. bgcolor() | bgcolor(szín))

Példa

screen.screensize()

(400, 300)

screen.screensize(2000, 1500)

screen.screensize()

(2000, 1500)

Teknőc mozgatás

forward(távolság) | fd(távolság)

A teknőc előre mozog távolság pixellel.

import turtle

t = turtle.Turtle()

t.forward(100)

backward(távolság) | back(távolság) | bk(távolság)

A teknőc hátra mozog a távolság paraméterben megadott pixelek számával.

import turtle

t = turtle.Turtle()

t.backward(100)

right(szög) | rt(szög)

A right(szög) vagy röviden rt(szög) utasítás a teknőst jobbra fordítja a megadott szöggel.

• A szög mértékegysége fok
• A teknős helyzete nem változik, csak az iránya

Példa

turtle.right(90)

left(szög) | lt(szög)

A left(szög) vagy lt(szög) utasítás a teknőst balra fordítja a megadott szöggel.

7/24

• A szög értéke fokban van megadva

Példa

turtle.left(45)

goto(x, y) | setpos(x, y) | setposition(x, y)

A goto(x, y), setpos(x, y) és setposition(x, y) utasítások a teknőst egy megadott
koordinátára helyezik át.

• Az x és y a képernyő koordinátái,
• Ha a toll lent van, a teknős vonalat rajzol mozgás közben.

Példa

turtle.goto(100, 50)

home()

A home() utasítás a teknőst visszaviszi a kezdőpontra.

• Kezdőpont: (0, 0)
• Alapértelmezett irány: kelet (0 fok)

Példa

turtle.home()

setheading(irány) | seth(irány)

A setheading(irány) vagy seth(irány) utasítás a teknős irányát állítja be.

Az irány fokban van megadva

• 0 fok: jobbra (kelet)
• 90 fok: felfelé (észak)
• 180 fok: balra (nyugat)
• 270 fok: lefelé (dél)

Példa

turtle.setheading(90)

setx(x)

A setx(x) utasítás a teknős x koordinátáját változtatja meg, miközben az y koordináta
változatlan marad.

8/24

Példa

turtle.setx(150)

sety(y)

A sety(y) utasítás a teknős y koordinátáját változtatja meg, miközben az x koordináta
változatlan marad.

Példa

turtle.sety(-100)

Az űrlap alja Teknőc állapotainak lekérdezése

position() | pos()

A position() vagy röviden pos() függvény visszaadja a teknős aktuális pozícióját.

• Az eredmény egy (x, y) koordinátapár (tuple)

Példa

hely = turtle.pos()

print(hely)

towards()

A towards() függvény meghatározza azt az irányt (fokban), amerre a teknősnek fordulnia
kellene egy adott ponthoz vagy egy másik teknőshöz képest.

• A visszatérési érték fokban megadott irány

• A teknős irányát nem változtatja meg

Példa

irany = turtle.towards(100, 0)

print(irany)

xcor()

A xcor() függvény visszaadja a teknős aktuális x koordinátáját.

Példa

x = turtle.xcor()

9/24

print(x)

ycor()

A ycor() függvény visszaadja a teknős aktuális y koordinátáját.

Példa

y = turtle.ycor()

print(y)

heading()

A heading() függvény visszaadja a teknős aktuális irányát fokban.

• 0°: jobbra (kelet)

• 90°: felfelé (észak)

• 180°: balra (nyugat)

• 270°: lefelé (dél)

Példa

irany = turtle.heading()

print(irany)

distance(x, y) | distance(teknős)

A distance() függvény kiszámítja a teknős távolságát egy megadott ponttól vagy egy
másik teknőstől. Az eredmény lebegőpontos szám

Példa

tav = turtle.distance(0, 0)

print(tav)

Rajzolás tulajdonságainak beállítása

speed() | speed(n)

A speed() utasítás a teknőc rajzolási sebességét kérdezi le vagy állítja be. Értéke 0 és 10
között lehet, ahol a nagyobb szám gyorsabb mozgást jelent. A 0 a lehető leggyorsabb
rajzolást állítja be (animáció nélkül).

10/24

Példa

import turtle

t = turtle.Turtle()

t.speed(1) # nagyon lassú

t.forward(100)

tracer()

A tracer() utasítás az animáció frissítését szabályozza. Segítségével gyorsíthatjuk a
rajzolást azzal, hogy nem minden lépésnél frissül a képernyő. Lásd még: tracer() |

tracer(n) | tracer(n, idő)

Példa

import turtle

turtle.tracer(0) # animáció kikapcsolása

t = turtle.Turtle()

for i in range(100):

 t.forward(5)

 t.right(5)

turtle.update() # képernyő frissítése

reset()

A reset() utasítás törli az adott teknőc rajzait, és visszaállítja alaphelyzetbe. A teknőc
visszakerül a kezdőpontra, alap irányba és alap beállításokkal.

Példa

import turtle

t = turtle.Turtle()

t.forward(100)

t.reset() # rajz törlése, teknőc alaphelyzetbe

clear()

A clear() utasítás csak a rajzot törli, de a teknőc helyzetét nem változtatja meg. A teknőc
ott marad, ahol volt, csak a vonalak tűnnek el.

11/24

Példa

import turtle

t = turtle.Turtle()

t.forward(100)

t.clear() # rajz eltűnik, teknőc marad

write(szöveg) | write(szöveg, mozgat)

A write() utasítás szöveget ír ki a képernyőre a teknőc aktuális helyén. Használható
szöveg megjelenítésére, feliratok készítésére. Ha mozgat igaz, a toll a szöveg jobb alsó
sarkára kerül. Megadható betűtípus is a font kulcsszavas paraméterrel

Példa

import turtle

t = turtle.Turtle()

t.write("Hello Turtle!", font=("Arial", 16, "normal"))

Toll tulajdonságok

pendown() | pd() | down()

A pendown() utasítás bekapcsolja a rajzolást. Amikor a teknőc mozog, vonalat hagy maga
után.

Példa

import turtle

t = turtle.Turtle()

t.pendown()

t.forward(100)

penup() | pu() | up()

A penup() utasítás kikapcsolja a rajzolást. A teknőc mozog, de nem rajzol vonalat.

Példa

import turtle

t = turtle.Turtle()

t.penup()

12/24

t.forward(100)

pensize() | width() | pensize(n) | width(n)

A pensize() utasítás a vonal vastagságát állítja be. Minél nagyobb az érték, annál
vastagabb a vonal.

Példa

import turtle

t = turtle.Turtle()

t.pensize(5)

t.forward(100)

pen(**beállítások)

A pen() utasítás a toll aktuális állapotát kezeli. Segítségével egyszerre több tollbeállítást
is megadhatunk vagy lekérdezhetünk. A beállítások nevei megegyeznek a hozzájuk tartozó
saját eljárások neveivel.

Példa

import turtle

t = turtle.Turtle()

t.pen(pencolor="red", pensize=3)

t.forward(100)

isdown()

Az isdown() megmondja, hogy a toll éppen rajzol-e. Igaz (True), ha a toll lent van, hamis
(False), ha fent.

Példa

import turtle

t = turtle.Turtle()

print(t.isdown()) # True

t.penup()

print(t.isdown()) # False

13/24

color() | color(vonalszín) | color(vonalszín, kitöltszín)

A color() utasítás egyszerre állítja a vonal- és kitöltési színt. Egy vagy két színt is
megadhatunk.

Példa

import turtle

t = turtle.Turtle()

t.color("blue", "yellow")

t.begin_fill()

t.circle(50)

t.end_fill()

pencolor() | pencolor(szín)

A pencolor() a rajzolóvonal színét állítja be.

Példa

import turtle

t = turtle.Turtle()

t.pencolor("green")

t.forward(100)

fillcolor() | fillcolor(szín)

A fillcolor() az alakzat kitöltési színét állítja be.

Példa

import turtle

t = turtle.Turtle()

t.fillcolor("red")

t.begin_fill()

t.circle(50)

t.end_fill()

filling()

A filling() megmondja, hogy éppen folyamatban van-e a kitöltés. Igaz (True), ha a
begin_fill() már megtörtént, de az end_fill() még nem.

14/24

Példa

import turtle

t = turtle.Turtle()

t.begin_fill()

print(t.filling()) # True

t.end_fill()

print(t.filling()) # False

begin_fill()

A begin_fill() jelzi a kitöltés kezdetét. Az ezután rajzolt alakzat kitöltésre kerül.

Példa

import turtle

t = turtle.Turtle()

t.begin_fill()

t.circle(50)

end_fill()

Az end_fill() lezárja a kitöltést és kiszínezi az alakzatot.

Példa

import turtle

t = turtle.Turtle()

t.fillcolor("purple")

t.begin_fill()

t.circle(50)

t.end_fill()

Kész rajzoló eljárások

circle(r, a)

A circle() utasítás kört vagy körívet rajzol. Paraméterként megadható a kör sugara (r),
illetve opcionálisan a rajzolt ív szöge (a).

15/24

Példa

import turtle

t = turtle.Turtle()

t.circle(50) # teljes 50 sugarú kör

t.circle(50, 180) # 50 sugarú félkör

dot() | dot(méret) | dot(méret, szín)

A dot() utasítás egy kitöltött pontot rajzol a teknőc aktuális helyén. Megadható a pont
mérete és színe is.

Példa

import turtle

t = turtle.Turtle()

t.dot(20, "red")

stamp()

A stamp() utasítás lenyomatot készít a teknőc aktuális alakjáról. A lenyomat a helyén
marad akkor is, ha a teknőc elmozdul vagy eltűnik. A függvény visszatérési értéke a
lenyomat azonosítója.

Példa

import turtle

t = turtle.Turtle()

stamp_id = t.stamp()

t.forward(100)

clearstamp(azon)

A clearstamp() egy korábban létrehozott lenyomatot töröl. A törléshez meg kell adni a
lenyomat azonosítóját.

Példa

import turtle

t = turtle.Turtle()

stamp_id = t.stamp()

t.forward(100)

16/24

t.clearstamp(stamp_id)

clearstamps() | clearstamps(n)

A clearstamps() az összes (vagy megadott számú) lenyomatot törli. Paraméter nélkül az
összes lenyomat eltűnik. Ha az n paraméter pozitív, az első n, ha negatív, az utolsó n
lenyomatot törli.

Példa

import turtle

t = turtle.Turtle()

for i in range(5):

 t.stamp()

 t.forward(30)

t.clearstamps()

Animáció

no_animation()

Ideiglenesen kikapcsolja a turtle animációt. A no_animation blokkban lévő kód nem
animálva fut le, és csak a blokk végén jelenik meg egyszerre a rajz. (Python 3.14-től
érhető el.)

Ez nagyon hasznos, ha:

• gyorsítani akarod a rajzolást

• nem akarod látni a „rajzolás közbeni” mozgást

Példa

with screen.no_animation():

 for dist in range(2, 400, 2):

 fd(dist)

 rt(90)

A spirál egyből kirajzolódik, nem lépésenként.

delay() | delay(idő)

Beállítja vagy lekérdezi a rajzolás késleltetését. Minél nagyobb a késleltetés értéke,
annál lassabb az animáció, az idő paraméter pozitív egész szám, a két képernyőfrissítés
közti idő ms-ban.

17/24

Példa

screen.delay()

10 - jelenlegi késleltetési idő: 10 ms

screen.delay(5)

gyorsabb rajzolás

screen.delay()

5 - jelenlegi késleltetési idő: 5 ms

tracer() | tracer(n) | tracer(n, idő)

Az animáció ki-/bekapcsolása és gyorsítására, paraméter nélkül a képernyőfrissítés
sebességének lekérdezésére szolgál. Az idő paraméterben megadott
ezredmásodpercenként frissíti az a képernyőt a futás közben, az n paraméterben
megadott lépés után. A rajzolás gyorsítására használható, bonyolult rajzok esetében.

Példa

screen.tracer(8, 25) # csak minden 8. lépés látszik, 25 ms-ként

print(screen.tracer())

8 – n értéke

screen.tracer(0) # képernyő frissítés kikapcsolás

screen.update() # manuális képernyőfrissítés

update()

Képernyőfrissítés kézzel. Akkor kell használni, ha tracer(0)-val kikapcsoltad az
automatikus frissítést.

Példa

screen.tracer(0) # képernyő frissítés kikapcsolás

screen.update() # manuális képernyőfrissítés

Eseménykezelés

listen()

A listen() utasítás bekapcsolja a billentyűzet figyelését a turtle ablakban.
Enélkül a billentyűesemények nem működnek.

Példa:

import turtle

screen = turtle.Screen()

18/24

screen.listen()

onkey() | onkeyrelease()

Az onkey() vagy onkeyrelease() egy billentyű elengedéséhez rendel egy függvényt.
Amikor a megadott billentyűt felengedjük, a függvény lefut.

Példa

import turtle

t = turtle.Turtle()

screen = turtle.Screen()

def elore():

 t.forward(50)

screen.listen()

screen.onkey(elore, "Up")

A teknőc akkor mozdul előre, amikor felengedjük a fel nyilat.

onkeypress()

Az onkeypress() egy billentyű lenyomásához rendel egy függvényt.
A függvény már a billentyű lenyomásakor lefut (nem elengedéskor).

Példa

import turtle

t = turtle.Turtle()

screen = turtle.Screen()

def balra():

 t.left(30)

screen.listen()

screen.onkeypress(balra, "Left")

A teknőc már a billentyű lenyomásakor balra fordul.

onclick(fun, btn=1, add=None)

A megadott fun függvényt hozzárendeli a teknőcön történő kattintáshoz.

• Ha fun értéke None, az összes korábbi kattintásesemény törlődik.

• A függvény automatikusan megkapja a kattintás (x, y) koordinátáit.

Paraméterek:

19/24

• fun – (kötelező) egy függvény két paraméterrel (x, y), amelyet a rendszer meghív
a kattintás helyének koordinátáival,

• btn – (opcionális) az egérgomb száma (alapértelmezett: 1 – bal egérgomb)

• add – (opcionális) True (új eseménykezelőt ad hozzá) vagy False (lecseréli a
korábbit)

Példa

t = turtle.Turtle()

def fordul(x, y):

 t.left(180)

onclick(fordul) # kattintásra a teknőc megfordul

onclick(None) # kattintás esemény törlése

onrelease(fun, btn=1, add=None)

A megadott fun függvényt akkor hívja meg, amikor elengeded az egérgombot a teknőc
felett. Ha fun = None, az eseménykezelés megszűnik. Paraméterezése ugyanaz, mint az
onclick(fun, btn=1, add=None) esetén.

Példa

def piros(x, y):

 t.fillcolor("red")

def atlatszo(x, y):

 t.fillcolor("")

t = turtle.Turtle()

t.onclick(piros) # kattintáskor piros lesz

t.onrelease(atlatszo) # elengedéskor átlátszó

ondrag(fun) | onrelease(fun, btn) | onrelease(fun, btn, add)

A fv függvényt akkor hívja meg, amikor az egérgomb lenyomva van, és az egér mozog a
teknőc fölött (minden húzási eseményt megelőz egy kattintás a teknőcön).
Paraméterezése ugyanaz, mint az onclick(fun, btn=1, add=None) esetén.

Példa

turtle.ondrag(turtle.goto)

ha a teknőcre kattintva az egeret lenyomva tartjuk, a teknőc követi

az egérkurzor pozícióját, ha a toll le van rakva, rajzol is

20/24

ontimer(fv) | ontimer(fv, idő))

Egy időzítőt állít be, amely idő milliszekundum elteltével meghívja a fv függvényt.

Ez az animációk alapja turtle-ben: a függvény önmagát újra és újra meghívhatja az
ontimer segítségével.

Paraméterek:

• fv – egy paraméter nélküli függvény, amelyet az időzítő hív meg,

• idő – (opcionális) egy 0-nál nagyobb vagy egyenlő szám, ez az idő
ezredmásodpercben (alapértelmezett: 0).

Példa

screen = turtle.Screen()

t = turtle. Turtle()

def mozog():

 if fut: # ha a fut változó értéke igaz

 t.fd(50) # a teknőc előremegy 50-et

 t.lt(60) # a teknőc elfordul 60 fokot

 screen.ontimer(mozog, 250) # az ontimer esemény 250 ms múlva

újra meghívja a mozog függvényt

fut = True

mozog() # elindítja a teknőc mozgását

fut = False # leállítja a teknőc mozgását

mainloop() | done()

Elindítja az eseménykezelő ciklust, vagyis meghívja a Tkinter mainloop() függvényét.

Ez kötelezően a turtle grafikus program utolsó utasítása kell legyen.

Nem szabad használni, ha a programot IDLE-ben -n módban (No subprocess) futtatjuk,
vagyis amikor a turtle grafikát interaktívan használjuk.

Python vezérlő utasítások

for

A for elem in sorozat vezérlési szerkezet egy sorozat elemein való végigiterálásra
szolgál. A sorozat lehet lista, tuple, szótár, halmaz,karakterlánc, vagy más iterálható
objektum.

A for ciklus működése eltér a más programozási nyelvekben megszokott for kulcsszótól,
mivel nem indexalapú, hanem inkább egy iterátoron alapuló működést valósít meg (for-
each), amely az objektumorientált programozási nyelvekre jellemző.

21/24

A for ciklus segítségével egy utasítássorozatot hajthatunk végre a sorozat minden egyes
elemére pontosan egyszer.

Példa

szöveges lista elemeinek kiíratás

gyumolcsok = ["alma", "banán", "meggy"]

for gyumolcs in gyumolcsok:

 print(gyumolcs)

karakterlánc karaktereinek kiíratása

for betu in "almafa":

 print(betu)

számlálós ciklus megvalósítása: egész számok kiíratása 1-től 10-ig

for i in range(10):

 print(i)

while

A while ciklus egy feltételvezérelt ciklus, amely addig hajt végre egy utasítássorozatot,
amíg a megadott logikai feltétel igaz.

A ciklus feltétele minden egyes iteráció előtt kiértékelésre kerül. Ha a feltétel hamissá
válik, a ciklus végrehajtása megszakad. Fontos, hogy a cikluson belül gondoskodjunk a
feltétel megváltoztatásáról, ellenkező esetben végtelen ciklus jöhet létre.

Példa

Számok kiíratása 1-től 5-ig:

i = 1

while i <= 5:

 print(i)

 i += 1

if

Az if utasítás feltételes vezérlést valósít meg. Segítségével egy utasítássorozat csak
akkor hajtódik végre, ha a megadott feltétel igaz.

Példa

x = 10

if x > 0:

 print("A szám pozitív.")

22/24

if else

Az if–else utasítás két egymást kizáró végrehajtási ágat biztosít. Ha az if feltétele igaz,
az if blokk hajtódik végre, ellenkező esetben az else blokk.

Példa

egy szám előjelének meghatározása

x = -3

if x >= 0:

 print("A szám nem negatív.")

else:

 print("A szám negatív.")

def

A def utasítás függvények definiálására szolgál. A függvény egy újrafelhasználható
kódrészlet, amely csak akkor hajtódik végre, amikor meghívjuk.

A függvény paramétereket fogadhat, és visszatérési értéket is adhat.

Példa

Egyszerű függvény definiálása és meghívása:

def koszontes():

 print("Hello, világ!")

koszontes()

Példa paraméterrel és visszatérési értékkel:

def osszeg(a, b):

 return a + b

eredmeny = osszeg(3, 5)

print(eredmeny)

return

A return utasítás a függvény végrehajtását lezárja, és visszaadja az eredményt a hívó
programrésznek.

Példa

Példa paraméterrel és visszatérési értékkel:

def osszeg(a, b):

 return a + b

eredmeny = osszeg(3, 5)

print(eredmeny)

23/24

Matematikai függvények – math modul

A math modul matematikai műveletek és konstansok használatát teszi lehetővé, például
gyökvonást, trigonometrikus függvényeket és a π (pi) értékét.

Példa

import math

sqrt(szám)

A sqrt(szám) függvény egy szám négyzetgyökét számítja ki. A szám paraméter egy
nemnegatív szám kell legyen. A függvény eredmény lebegőpontos szám.

Példa

import math

eredmeny = math.sqrt(16)

print(eredmeny)

sin(x)

A sin(x) függvény az x szög szinuszát adja meg. Az x értéke radiánban értendő, nem
fokban.

Példa

import math

eredmeny = math.sin(math.pi / 2)

print(eredmeny)

cos(x)

A cos(x) függvény az x szög koszinuszát számítja ki. Az x értéke radiánban van megadva.

Példa

import math

eredmeny = math.cos(0)

print(eredmeny)

tan(x)

A tan(x) függvény az x szög tangensét adja meg. Az x paraméter radiánban értendő.
Bizonyos értékeknél (pl. π/2) a tangens nem értelmezett.

24/24

Példa

import math

eredmeny = math.tan(math.pi / 4)

print(eredmeny)

pi

A pi egy matematikai konstans, amely a π (pi) értékét tartalmazza, amelynek értéke
megközelítőleg: 3.141592653589793.

Példa

import math

print(math.pi)

radians(szög_fok)

Ha fokban megadott szögekkel dolgozol, először radiánná kell alakítani őket a
math.radians() függvénnyel.

Példa

import math

szog_fok = 30

szog_radian = math.radians(szog_fok)

print(math.sin(szog_radian))

